

Nothing But .NET: Taking Advantage of the AutoCAD® Civil

3D® .NET API
Joshua Modglin – InMotion Consulting

CP430-2 This is the class for all those who ever wanted to learn how to program AutoCAD Civil 3D

using the .NET API but have never had the time. We will walk through a real live project idea from start
to deployment using Visual Basic® .NET and the AutoCAD Civil 3D .NET API. In the process, we will
learn about proper referencing, object structure, transactions, and loading our built application into
AutoCAD Civil 3D.

About the Speaker:
Josh Modglin is a managing partner with InMotion Consulting. He began working in construction in his
teens. Thus in school, the natural transition was to Civil Engineering. Since graduating in 1996, he has
worked on hundreds of development projects around the world.

It has been a fun and bumpy ride - starting with AutoCAD Release 12, progressing to Eagle Point,
dealing with AutoCAD Release 13, seeing the light with AutoCAD Release 14 and Softdesk 7, beginning
to customize with Land Desktop 2000, losing hair on a production project using Civil3D 2005, and now
building .Net applications for AutoCAD Civil3D 2011.

joshua.modglin@inmotioncon.com

mailto:joshua.modglin@inmotioncon.com

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

2

STARTING A PROJECT
To start any type of project we have to not only know where are going (or the end result) but also how

we are going to get there (steps involved). This is an oft forgotten truth of software projects and tools

as well.

SOFTWARE REQUIREMENTS SPECIFICATION
For any software project – even the small ones – it is good to create a requirements specification.

The basic idea is write out what the software is, the user interface, and functions needed to

accomplish the task of the project. As there is for anything else, there is a standard called IEEE-STD-

830-1998. However, whatever system you use just make sure you use one.

FUNCTION FLOW CHART
Another method that works better for the functions themselves is a flow chart. Let’s do this for our

main function within the project. We are going to create a function that allows us to select the

alignments within the current drawing from a list or alternatively graphically and apply a selected

alignment style to these selected alignments.

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

3

BREAKDOWN OF THE FLOW CHART

As we can see from the flow chart, we first check to see if there are any alignments in the drawing.

Next we will open up a form (dialog box) which will have six options two for selection of the

alignments, two for selection of the alignment style, and two general options (ok and cancel).

The options for selecting an alignment are either from a list or graphically. First, is a list with check

boxes next to it. The user will then check the alignments he wants to apply the new style to.

Alternatively, the user can select a button which will allow them to select the alignments

graphically.

The options for selecting the alignment style are either from a combo box or graphically. First is a

combo box with a list of all the alignment styles within the drawing. Alternatively, the user can

select a button which will allow them to select the alignment style by selecting an alignment object.

Once the user has his selections he selects an ok button and the function runs through the selected

alignments and applies the selected style to it.

Because we have created a flow chart, we understand, not only the function but also, the steps to

accomplish the function and what traps may be required.

CREATING THE VISUAL STUDIO PROJECT
There are many .Net languages that can be used and currently all Visual Studio packages (2003-2010)

can be used to build add-ons to AutoCAD Civil 3D 2011. However, only 2008 is truly supported. Thus,

we are going to use Visual Studio 2008 Express – Visual Basic Edition to accomplish our project.

First we open VS and start a new “Class Library” project template (We could use the plug-in but just in

case the plug in is not available or does not work, we are going to build one from scratch).

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

4

We are going to name this project Civil3DNet. In our Solution Explorer (you can open from

View>Solution Explorer), we see that our project (and solution) named Civil3DNet is created and one

class is already created called “Class1.vb”.

SETTING THE PROJECT’S PROPERTIES
In our Solution Explorer, if we right-click on our project’s name and select properties this will open a

project’s properties tab.

Notice that our assembly name (or dll) is the same name as our project. We can change the name of our

output assembly but it is usually a good practice to keep it the same as our project.

NAMESPACES

Namespaces are what you might consider a directory structure (tree structure) for libraries. Thus, it

is a good practice to assign namespaces that organize all your libraries under one major namespace

(think Root directory).

The easiest way to make sure that all libraries we build are under the same root directory is to set

the root directory to our company name.

In this exercise the main root directory, or first namespace will be “AU”.

Now since this project will include all functions, methods, etc that is specific to working with Civil

3D, we will add one more directory or namespace – “Civil3D”.

Thus, in our Root namespace we will have “AU.Civil3D”.

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

5

REFERENCES

If we go down to the References option and click on this, we are going to add four references. Each

one of these is located in “C:\Program Files\Autodesk\AutoCAD Civil 3D 2011” (It is best to use

references from the ObjectARX SDK where possible). To add the references we click on the add

button about mid-right of the references section. The four references we are looking for are:

 acdbmgd.dll

 acmgd.dll

 AecBaseMgd.dll

 AeccDbMgd.dll

Since we are building an add-on, then when our software runs these references will already exist in

and be called from Autodesk. Thus, we need to set each of these references to not be copied with

our project. We do this by selecting these newly added references and setting their “Copy Local”

parameter to False in the properties window (View>Properties Window). When we are done our

References should look similar to the figure below.

DEBUGGING IN EXPRESS

We will want to test and debug our software but VS Express does not give us a way to set an

application to run for debugging in our project properties. Thus we have to do a little more manual

legwork.

First, let’s save the project that we have so far. Now close the VS Express application and, using

Windows Explorer, go to the project directory. Select the Civil3DNet.vbproj.user file and open the

file using Notepad.

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

6

Once open replace all the text with the following:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">

 <StartAction>Program</StartAction>

 <StartProgram>C:\Program Files\Autodesk\AutoCAD Civil 3D 2011\acad.exe</StartProgram>

 </PropertyGroup>

</Project>

Save and close the file and reopen the project in VS Express. The project is now ready for

debugging.

BUILDING OUR FUNCTION
Let’s focus now on that class in our Solutions Explorer. We want to right-click on the “Class1.vb” file

and rename it to “Commands.vb”. Next, let’s open this class.

Since this class is where we are going to store our commands there are certain libraries that we will be

using quite extensively in this class. Thus to reduce typing, let’s Import these namespaces.

ABOVE where it says “Public Class Commands”, we want to add:

Imports Autodesk.AutoCAD.Runtime

Imports Autodesk.AutoCAD.EditorInput

Imports Autodesk.AutoCAD.DatabaseServices

Imports Autodesk.AutoCAD.ApplicationServices

Imports Autodesk.Civil.Land.DatabaseServices

This reduces the need to type all of those namespaces (or directories) every time we want to use

something that resides in that namespace library.

Also so that Autodesk is aware and loads this class faster, we want to inform it that this class contains

commands. To do this we add the following line below the imports but above the class.

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

7

<Assembly: CommandClass(GetType(AU.Civil3D.Commands))>

So what we have so far is:

Imports Autodesk.AutoCAD.Runtime

Imports Autodesk.AutoCAD.EditorInput

Imports Autodesk.AutoCAD.DatabaseServices

Imports Autodesk.AutoCAD.ApplicationServices

Imports Autodesk.Civil.Land.DatabaseServices

<Assembly: CommandClass(GetType(AU.Civil3D.Commands))>

Public Class Commands

End Class

Just to do some clarification, the file (“Commands.vb”) is often referred to as a class. However, this is

just a envelope to hold an object or objects. So a file could contain multiple classes.

THE COMMAND
Now that we have our class and vb file setup, let’s actually build the command. The command is

what will be typed into the AutoCAD command line to fire an associated routine. We are going to

name our command “SetAlignmentStyles”. To build our command, we will write the following inside

the “Commands” class:

Public Class Commands

 <CommandMethod("SetAlignmentStyles")> _

 Public Sub cmdSetAlignStyles()

 End Sub

End Class

So we have a command name of “SetAlignmentStyles” assigned to a public sub named

“cmdSetAlignStyles”. So when we have our library (dll) loaded into AutoCAD and a user types the

command name, the sub routine will fire.

So now that we have our command built we need to add meat to the command.

We will be interacting with the user through the command line so first we will get the editor which

allows us to input to the command line and also get input from the user at the command line. We get

the editor of the current document using the following:

Dim ed As Editor = Application.DocumentManager.MdiActiveDocument.Editor

The first step in our function was to check to see if there are any alignments in the drawing to begin

with. We do this by first getting the current CivilDocument object and checking to see if the

document contains any alignment ObjectId’s. An ObjectId is an AutoCAD unique id assigned to an

object when the document (drawing) is opened. We get this using the following code:

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

8

Dim civDoc As Autodesk.Civil.ApplicationServices.CivilDocument

civDoc = Autodesk.Civil.ApplicationServices.CivilApplication.ActiveDocument

Dim alignIds As ObjectIdCollection = civDoc.GetAlignmentIds

Since the alignIds object is a collection, all we have to do is check to see if there are any objects in the

collection or if it is an empty collection. If it is empty we tell the user that we are ending and why and

exit the function.

If alignIds.Count = 0 Then

ed.WriteMessage(vbLf & "No alignments in drawing.")

Exit Sub

End If

So what we have so far is:

<CommandMethod("SetAlignmentStyles")> _

Public Sub cmdSetAlignStyles()

 Dim ed As Editor = Application.DocumentManager.MdiActiveDocument.Editor

 Dim civDoc As Autodesk.Civil.ApplicationServices.CivilDocument

 civDoc = Autodesk.Civil.ApplicationServices.CivilApplication.ActiveDocument

 Dim alignIds As ObjectIdCollection = civDoc.GetAlignmentIds

 If alignIds.Count = 0 Then

 ed.WriteMessage(vbLf & "No alignments in drawing.")

 Exit Sub

 End If

End Sub

Notice that we added a method called WriteMessage which is in the Editor. This writes to the

command line. By adding the “vbLf”, we make sure that our message is on a new line.

CREATING THE FORM
Okay, so we have created the command and built a check to see if there are any alignments in the

drawing. If there are alignments then we are going to show a form with the alignments in a list. Let’s

create a new dialog form by right clicking on our project in the Solutions Explorer and choosing “Add

New Item”. From the New Item dialog, we want to select a Dialog item and name it frmAlignStyles.

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

9

A dialog is just a form with a few parameters preset for us and the ok and cancel buttons already

added. We now have our base form created for us. Let’s change the text for our form title to read

“Set Alignment Styles”. Other parameters to set for the form:

 FormBorderStyle= Sizable

 MinimumSize=436,330

 ShowIcon=False

 Size=436,330

First let’s add a Button from the Toolbox (View>Toolbox). The Button will have the following

parameters:

 Name= btnAlignPick

 Anchor=Top,Right

 Location=384,8

 Size=38,23

 Text=Pick

Now let’s add a DataGridView object. We need to set the following parameters for the DataGridView

object.

 Name = dgvAlign

 AllowUserToAddRows=False

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

10

 AllowUserToDeleteRows=False

 Anchor=Top,Bottom,Right,Left

 AutoSizeColumnMode=Fill

 Columns=

o Checked

 HeaderText=” ”

 DataPropertyName=Selected

 SortMode=NotSortable

 ColumnType=CheckBox

 FillWeight=15

o cName

 HeaderText=”Name”

 DataPropertyName=Name

 SortMode=Automatic

 ColumnType=TextBox

 FillWeight=65

o Desc

 HeaderText=”Description”

 DataPropertyName=Description

 SortMode=NotSortable

 ColumnType=TextBox

 FillWeight=100

o cId

 HeaderText=”Id”

 DataPropertyName=Id

 Visible=False

 SortMode= NotSortable

 ColumnType=TextBox

 FillWeight=1

 Location=8,8

 MultiSelect=True

 RowHeadersVisible=False

 Size=370,184

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

11

 SelectionMode=FullRowSelect

Now add a Label and line it up under the DataGridView but far enough that the user sees that they

are not connected. The Label should have the following parameters:

 Text=Select Alignment Style

 Anchor=Bottom,Left

 Location=5,205

Next add a ComboBox object right under the label. The parameters for the ComboBox object should

be:

 Name=cboStyle

 Anchor=Bottom,Left

 DropDownStyle=DropDownList

 Location=8,223

 Size=200,21

 Sorted=False

Finally copy the Pick button, paste and align it just right of the ComboBox object. The new Button

should have the following parameters:

 Name=btnStyle

 Anchor=Bottom,Left

 Location=214,221

When you are done, the form should look similar to the figure below.

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

12

POPULATING THE FORM
To fill the form we need to get the collection of alignment objects and alignment styles. To do this we

have to understand AutoCAD Transactions.

To get anything from the document’s database, you need to query it. To query you need to start a

Transaction which ‘opens’, or connects you to the drawing database. The tendency is to leave the

connection open for however long you need to complete your function. However, since you may not

be the only one working with the database even when you are in your function, you need to do what

you there for only and get out. Once you are out the objects obtained while you were in the

connection are no longer valid.

For example, you start a Transaction and get an alignment object. When you close the Transaction,

you really can’t work with the alignment object. Now since we are just querying and not editing the

database, we probably could leave the Transaction open but it is just not good practice so how do we

get the data and use it OUTSIDE of the Transaction?

CREATING SPECIAL CLASSES

We are going to create two special Classes – one for styles and one for objects. To do this, we are

going to create another Class which will contain functions for alignments.

First let’s create a Civil 3D Object Class. To do this we are going to right-click on the Solutions

Explorer and add an Objects class file. However, we are going to create a new Namespace in this

file called Objects and build both the styles and object Class in this one file. Hence, open the new

file and above the Class name add “Namespace Objects” and rename the Class to “BaseObject”.

You should have the following:

Namespace Objects

 Public Class BaseObject

 End Class

End Namespace

Now we are just going to add a few Properties to the Class. Properties are a simple way of storing

data which can be called and even changed. These Properties will be stored inside the object

through private variables. The Properties will be Name, Description, Selected, and Id. So our Class

will look like the following:

Public Class BaseObject

 Private objName As String = Nothing

 Public Property Name() As String

 Get

 Name = objName

 End Get

 Set(ByVal value As String)

 objName = value

 End Set

 End Property

 Private objDesc As String = Nothing

 Public Property Description() As String

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

13

 Get

 Description = objDesc

 End Get

 Set(ByVal value As String)

 objDesc = value

 End Set

 End Property

 Private objId As Autodesk.AutoCAD.DatabaseServices.ObjectId = Nothing

 Public Property Id() As Autodesk.AutoCAD.DatabaseServices.ObjectId

 Get

 Id = objId

 End Get

 Set(ByVal value As Autodesk.AutoCAD.DatabaseServices.ObjectId)

 objId = value

 End Set

 End Property

 Private objSelected As Boolean = False

 Public Property Selected() As Boolean

 Get

 Selected = objSelected

 End Get

 Set(ByVal value As Boolean)

 objSelected = value

 End Set

 End Property

End Class

Next, we are going to create another Class for the styles. However, we again want to store this is in

another Namespace. We are planning for the future where we may need to grow (or inherit) from

these Classes. Consequently, right below the Objects namespace we are going to add the Styles

Namespace. Inside the Styles Namespace, we are going to add the BaseStyle Class. It will also have

similar properties to the base object (This is just an exercise, remember. Styles though have very

different properties). We will have a name and id. Your BaseStyles Class will look like:

Namespace Styles

 Public Class BaseStyle

 Private objName As String = Nothing

 Public Property Name() As String

 Get

 Name = objName

 End Get

 Set(ByVal value As String)

 objName = value

 End Set

 End Property

 Private objId As Autodesk.AutoCAD.DatabaseServices.ObjectId = Nothing

 Public Property Id() As Autodesk.AutoCAD.DatabaseServices.ObjectId

 Get

 Id = objId

 End Get

 Set(ByVal value As Autodesk.AutoCAD.DatabaseServices.ObjectId)

 objId = value

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

14

 End Set

 End Property

 End Class

End Namespace

CREATING THE FUNCTIONS

Now that we have the base Classes built, let create some functions that will create a list of these

Classes that we can use. To do this we are going to create a third class file (Solutions Explorer>right-

click on Project and Add Class. The class will be called Alignments. It will belong in the Functions

Namespace.

Our first function will return a list of BaseObject Class objects that contain data about all the

alignments in the drawing. We will include a Parameter called “IncludeDrefs” which will allow the

function to filter the list to include only alignments that reside in the drawing or all including

referenced alignments. We also set our function to be shared so that we can call it without creating

an instance of the Class. What we have so far is:

Namespace Functions

 Public Class Alignments

 Public Shared Function GetAlignments(ByVal IncludeDrefs As Boolean) _

 As List(Of Objects.BaseObject)

 End Function

 End Class

End Namespace

We are first going to do a check similar to what we did with our command at the beginning. We are

going to see if there are any alignments in the drawing to begin with. If not, we will return nothing.

Public Shared Function GetAlignments(ByVal IncludeDrefs As Boolean) As _

 List(Of Objects.BaseObject)

 Dim civDoc As Autodesk.Civil.ApplicationServices.CivilDocument

 civDoc = _

 Autodesk.Civil.ApplicationServices.CivilApplication.ActiveDocument

 Dim alignIds As ObjectIdCollection = civDoc.GetAlignmentIds

 If alignIds.Count = 0 Then

 Return Nothing

 End If

 End Function

Finally, lets create a Transaction and iterate through our Id collection to create a list (or collection)

of BaseObjects that will contain the data of the alignments.

Since we want the Transaction to be disposed of immediately after our completion with it, we are

going to call it through the Using statement.

Dim aligns As New List(Of Objects.BaseObject)

Dim aBobj As Objects.BaseObject

Using trans As Transaction = _

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

15

 HostApplicationServices.WorkingDatabase.TransactionManager.StartTransaction

End Using

What we have done is called on the working database to start (create) a new Transaction and

assigned this Transaction to the “Trans” variable. The Transaction will be disposed of at the End

Using statment.

Now we will create a loop and taking the id’s, we will get the alignment objects. From them we will

create a new BaseObject and add it to our BaseObject’s collection. Of course, don’t forget we have

to check against the whole Dref parameter. Finally, we return the collection of BaseObjects.

Public Shared Function GetAlignments(ByVal IncludeDrefs As Boolean) As _

 List(Of Objects.BaseObject)

 Dim civDoc As Autodesk.Civil.ApplicationServices.CivilDocument

 civDoc = Autodesk.Civil.ApplicationServices.CivilApplication.ActiveDocument

 Dim alignIds As ObjectIdCollection = civDoc.GetAlignmentIds

 If alignIds.Count = 0 Then

 Return Nothing

 End If

 Dim aligns As New List(Of Objects.BaseObject)

 Dim aBobj As Objects.BaseObject

 Using trans As Transaction = _

 HostApplicationServices.WorkingDatabase.TransactionManager.StartTransaction

 Dim align As Autodesk.Civil.Land.DatabaseServices.Alignment

 For Each id As ObjectId In alignIds

 Try

 align = trans.GetObject(id, OpenMode.ForRead)

 If IncludeDrefs = False Then

 If align.IsReferenceObject = True Then Continue For

 End If

 aBobj = New Objects.BaseObject

 aBobj.Id = align.Id

 aBobj.Name = align.Name

 aBobj.Description = align.Description

 aligns.Add(aBobj)

 Catch

 End Try

 Next

 End Using

 Return aligns

End Function

Whew!! Now let’s create a function which will create a list of the alignment STYLES. Since we have

created the hard one first, this will go a little easier. There are no parameters to the function and

there will always be an alignment style so we don’t have to check to see if there are any. We can go

straight to the Transaction.

Public Shared Function GetAlignmentStyles() As List(Of Styles.BaseStyle)

 Dim civDoc As Autodesk.Civil.ApplicationServices.CivilDocument

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

16

 civDoc = Autodesk.Civil.ApplicationServices.CivilApplication.ActiveDocument

 Dim aStyles As New List(Of Styles.BaseStyle)

 Dim aStyleObj As Styles.BaseStyle

 Using trans As Transaction = _

 HostApplicationServices.WorkingDatabase.TransactionManager.StartTransaction

 Dim aStyle As Autodesk.Civil.Land.DatabaseServices.Styles.AlignmentStyle

 For Each id As ObjectId In civDoc.Styles.AlignmentStyles

 Try

 aStyle = trans.GetObject(id, OpenMode.ForRead)

 aStyleObj = New Styles.BaseStyle

 aStyleObj.Id = aStyle.Id

 aStyleObj.Name = aStyle.Name

 aStyles.Add(aStyleObj)

 Catch

 End Try

 Next

 End Using

 Return aStyles

End Function

Now that we have the functions built we can go back to our form and add calls to these functions to

populate the form.

We need to go to the code behind the form. We want to add two Friend variables – one for the

alignments list and one for the styles list. Because they are declared as Friends, we will be able to see

them in the rest of our project.

 Friend aligns As List(Of Objects.BaseObject)

 Friend aStyles As List(Of Styles.BaseStyle)

We then have to get the sub “New” which we can get from the pulldown in the form’s code tab.

In this sub, we will add calls to the functions we just created and populate the variables from above.

aligns = Functions.Alignments.GetAlignments(True)

aStyles = Functions.Alignments.GetAlignmentStyles

Next we link this data to our objects. We do this by assigning the DataSource for the objects and also

assigning the member to use for displaying data. The DataGridView data to display for each row was

already assigned in the DataPropertyName parameter. Thus, we only have to assign the display

member for the combo box. However, ultimately we will use the ObjectId to get the style so we can

also assign this as the value of the selection. One value (Name) is displayed to the user while another

value (ObjectId) is provided to us.

Me.dgvAlign.DataSource = aligns

Me.cboStyle.DataSource = aStyles

Me.cboStyle.DisplayMember = "Name"

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

17

Me.cboStyle.ValueMember = "Id"

SETTING UP THE GRAPHICAL SELECTIONS
In our form, we have created an option where they can graphically select alignments and can also

select an alignment to get the style selection from. Let’ build the code for this.

To do this we need to create an Event. Visual Studio makes this somewhat effortless. If we go back to

the form’s design and double click on the btnAlignPick object, VS will create a new sub routine which

is linked (or handles) the button click event.

Private Sub btnAlignPick_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnAlignPick.Click

End Sub

Now we want to add a command line selection prompt. We also want to build a filter that selects

only alignments. First, we need to get the current document’s Editor. Then we need to build the

options for the selection prompt. We create a new PromptSelectionOptions to do this.

Dim ssOpts As New PromptSelectionOptions

With ssOpts

 .AllowDuplicates = False

 .AllowSubSelections = False

 .MessageForAdding = vbLf & "Select alignments: "

 .MessageForRemoval = vbLf & "Remove alignments: "

 .RejectObjectsFromNonCurrentSpace = True

 .RejectObjectsOnLockedLayers = False

End With

Now we create a selection filter using an array of TypedValues. The array only contains a filter for the

object type but we could add all kinds of filters here (layers, linetypes, etc.). Finally, we create a

PromptSelectionResult variable and call the GetSelection method from the Editor.

Dim Values() As TypedValue = {New TypedValue(DxfCode.Start, _

 "AECC_ALIGNMENT")}

Dim fil As SelectionFilter = New SelectionFilter(Values)

Dim ssRes As PromptSelectionResult = ed.GetSelection(ssOpts, fil)

Now if the selection does not return ok then we have nothing to do and we can just exit the routine.

However, if it does return ok then it contains some selected objects. We want to iterate the selected

objects and mark these as selected in the DataGridView. We already have the ObjectIds of the

objects and this is one of the things available in the PromptSelectionResult.SelectedObjects collection.

Let’s use this to our advantage by building another function in our Functions.Alignment Class. This

function will search through a list of BaseObjects and return the first one in the list that has the same

ObjectId as what is fed to the function. (This function should reside in a Functions.General Class but

for sake of this example, we will place it in the Functions.Alignment Class).

Public Shared Function FindAlignmentById(ByVal AlignmentId As ObjectId, _

ByVal AlignmentsList As List(Of Objects.BaseObject)) As Objects.BaseObject

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

18

 If AlignmentsList Is Nothing Then Return Nothing

 If AlignmentsList.Count = 0 Then Return Nothing

 For Each align As Objects.BaseObject In AlignmentsList

 If align.Id = AlignmentId Then Return align

 Next

 Return Nothing

End Function

As we can see the power of our little base classes allow us to avoid Transactions a lot of time. Don’t

confuse the POWER of a Transaction with it being a BAD thing. However, misunderstanding and/or

abuse of that power is often what causes the most crashes in custom add-ons. Even if we use

Transactions correctly, can we guarantee that other add-ons that reside on a user’s computer are

using Transactions correctly? And since add-ons can fire using events, other add-ons may be working

at the same time as us. Thus, we use the POWER of Transactions when we need to only.

All right let’s get back to our selection results. All we do now is loop through the selected objects and

find the associated BaseObject using the new function above. We then change the Selected Property

of that BaseObject to True. Since our DataGridView is linked to the data of our list of BaseObjects the

DataGridView automatically updates.

Dim aObj As Objects.BaseObject

For Each selObj As SelectedObject In ssRes.Value

 aObj = Functions.Alignments.FindAlignmentById(selObj.ObjectId, Me.aligns)

 If aObj Is Nothing Then Continue For

 aObj.Selected = True

Next

So our finished routine for graphically selecting and adding alignments to our checked list is:

Private Sub btnAlignPick_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnAlignPick.Click

 Dim ed As Editor = _

Autodesk.AutoCAD.ApplicationServices.Application.DocumentManager.MdiActiveDoc

ument.Editor

 Dim ssOpts As New PromptSelectionOptions

 With ssOpts

 .AllowDuplicates = False

 .AllowSubSelections = False

 .MessageForAdding = vbLf & "Select alignments: "

 .MessageForRemoval = vbLf & "Remove alignments: "

 .RejectObjectsFromNonCurrentSpace = True

 .RejectObjectsOnLockedLayers = False

 End With

 Dim Values() As TypedValue = {New TypedValue(DxfCode.Start, _

 "AECC_ALIGNMENT")}

 Dim fil As SelectionFilter = New SelectionFilter(Values)

 Dim ssRes As PromptSelectionResult = ed.GetSelection(ssOpts, fil)

 If ssRes.Status <> PromptStatus.OK Then Exit Sub

 Dim aObj As Objects.BaseObject

 For Each selObj As SelectedObject In ssRes.Value

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

19

 aObj = Functions.Alignments.FindAlignmentById(selObj.ObjectId, Me.aligns)

 If aObj Is Nothing Then Continue For

 aObj.Selected = True

 Next

End Sub

Our last support function we have to build in our form is for the user to graphically select an

alignment to get the selected alignment style. The big difference in our interacting with the user in

this case is that we want to allow only a selection of one entity and not a selection set. So we use

different tools in the EditorInput called PromptEntityOptions and PromptEntityResult. Then we will

actually have to fire a Transaction and query the alignment object to get the alignment style’s

ObjectId. From there all we will have to do is set the ComboBox’s SelectedValue to the alignment

style’s ObjectId.

The button handler for the style selection should look similar to the following:

Private Sub btnStyle_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnStyle.Click

 Dim ed As Editor = _

Autodesk.AutoCAD.ApplicationServices.Application.DocumentManager.MdiActiveDoc

ument.Editor

 Dim entOpts As New PromptEntityOptions(vbLf & _

 "Select alignment to get style from or <return to form>: ")

 With entOpts

 .SetRejectMessage(vbLf & "Object is not a Civil 3D alignment")

 .AddAllowedClass(_

 GetType(Autodesk.Civil.Land.DatabaseServices.Alignment), True)

 .AllowNone = True

 .AllowObjectOnLockedLayer = True

 End With

 Dim entRes As PromptEntityResult = ed.GetEntity(entOpts)

 If entRes.Status <> PromptStatus.OK Then Exit Sub

 Using trans As Transaction = _

 HostApplicationServices.WorkingDatabase.TransactionManager.StartTransaction

 Try

 Dim align As Autodesk.Civil.Land.DatabaseServices.Alignment

 align = trans.GetObject(entRes.ObjectId, OpenMode.ForRead)

 Me.cboStyle.SelectedValue = align.StyleId

 Catch

 End Try

 End Using

End Sub

Notice that I always add a Try..Catch inside all of my Transactions. This way if anything crashes while

in a transaction, I still dispose of my transaction.

BUILDING THE ACTUAL CODE
It is amazing that the code to actually do the work is minimal compared to interacting with the user.

However, the key here is that we have interacted cleanly with the user, AutoCAD, and Civil 3D. Now

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

20

let’s go back to the command routine, learn how to show our form, and actually adjust our selected

alignments.

First to show our form, it is best to use the Autodesk method to show the form as part of the

AutoCAD application. Create a new instance of the form and then show it using the

Autodesk.ApplicationServices.Application.ShowModalDialog method. This will return a dialog result

which we can check.

Dim frm As New frmAlignStyles

If Application.ShowModalDialog(frm) <> _

Windows.Forms.DialogResult.OK Then Exit Sub

Since we know it returned okay because we are still in our sub and did not exit, we will fire a

Transaction and adjust the alignments. However, this is a special Transaction since we are actually

doing more than querying the database but making changes to it. Consequently, we need to lock out

anyone else from making changes at the same time. Also, since we are making changes we need to

commit these changes to the database at the end of the Transaction.

Using lck As DocumentLock = _

 Application.DocumentManager.MdiActiveDocument.LockDocument

 Using trans As Transaction = _

 HostApplicationServices.WorkingDatabase.TransactionManager.StartTransaction

 Try

 Dim align As Alignment

 For Each aObj As Objects.BaseObject In frm.aligns

 If aObj.Selected = False Then Continue For

 align = trans.GetObject(aObj.Id, OpenMode.ForWrite)

 align.StyleId = frm.cboStyle.SelectedValue

 Next

 Catch

 End Try

 trans.Commit()

 End Using

End Using

That is IT! We have done it!

DEPLOYING OUR SOFTWARE
Once we build our project DLL, we need to deploy it. To have it automatically load into AutoCAD Civil

3D we will need to write to the registry. The best way to do this is use an Installer. Unfortunately,

Microsoft’s Visual Studio Setup Projects don’t really give you the ability to check for an existing

installed application such as whether AutoCAD Civil 3D 2011 is installed and, if so, where.

Consequently, you have to use another Installer software. Personally, I LOVE the Shareware

application called InnoSetup (http://www.jrsoftware.org/isinfo.php). A sample InnoSetup project is

included in the documentation. The solution is to create an application in the Applications Key of the

AutoCAD Civil 3D registry. For example, in HKCU(HKLM)/Software/Autodesk/AutoCAD/R18.1/ACAD-

9000:409/Applications we add a new Key called AUCivil which has the following values:

http://www.jrsoftware.org/isinfo.php

Nothing But .NET: Taking Advantage of the AutoCAD® Civil 3D® .NET API

21

 String Value named DESCRIPTION

o This is simply a description of our software so we will set the value to “AU Sample”.

 A DWord(32 bit) Value named LOADCTRLS

o This tells AutoCAD when and how to load the application. By setting it to “2”, we will

load our application at startup.

 A String Value named LOADER

o This is the path to our DLL file and tells AutoCAD where to load it from. Set this to the

path that the DLL was installed in the deployment process.

 A DWord(32 bit) Value named MANAGED

o This tells AutoCAD that this is a managed .Net dll (versus an ObjectARX application).

We set this to “1” because we are a managed application.

OTHER RESOURCES
Please feel free to contact me at joshua.modglin@inmotioncon.com . You can also check out some of

the other online resources to learn more about Civil 3D .Net Customization.

http://inmotioncon.com

http://forums.autodesk.com/t5/AutoCAD-Civil-3D-Customization/bd-p/190

http://www.civil3d.com/category/civil3dcom/api/

http://www.civil3d.com/category/civil3dcom/programming/

See you next Year!!

mailto:joshua.modglin@inmotioncon.com
http://inmotioncon.com/
http://forums.autodesk.com/t5/AutoCAD-Civil-3D-Customization/bd-p/190
http://www.civil3d.com/category/civil3dcom/api/
http://www.civil3d.com/category/civil3dcom/programming/

